Home
ChemTSv21 is a refined and extended version of ChemTS2 and MPChemTS3. The original implementations are available at tsudalab/ChemTS and yoshizoe/mp-chemts, respectively.
ChemTSv2 provides:
- easy-to-run interface by using only a configuration file
- easy-to-define framework for users' any reward function, molecular filter, and tree policy
- various usage examples in the GitHub repository
Installation
Info
- Please set up a
Python 3.11environment to use ChemTSv2. OpenMPIorMPICHmust be installed on your server to use ChemTSv2 with massive parallel mode.
Single process mode
pip install chemtsv2
Massive parallel mode
pip install chemtsv2[mp]
How to run ChemTSv2
Example
Clone this repository and move into it.
git clone git@github.com:molecule-generator-collection/ChemTSv2.git
cd ChemTSv2
chemtsv2 -c config/setting.yaml
mpiexec -n 4 chemtsv2-mp --config config/setting_mp.yaml
How to cite
@article{Ishida2023,
doi = {10.1002/wcms.1680},
url = {https://doi.org/10.1002/wcms.1680},
year = {2023},
month = jul,
publisher = {Wiley},
author = {Shoichi Ishida and Tanuj Aasawat and Masato Sumita and Michio Katouda and Tatsuya Yoshizawa and Kazuki Yoshizoe and Koji Tsuda and Kei Terayama},
title = {ChemTSv2: Functional molecular design using de novo molecule generator},
journal = {{WIREs} Computational Molecular Science}
}
-
Ishida, S. and Aasawat, T. and Sumita, M. and Katouda, M. and Yoshizawa, T. and Yoshizoe, K. and Tsuda, K. and Terayama, K. (2023). ChemTSv2: Functional molecular design using de novo molecule generator. WIREs Computational Molecular Science https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1680 ↩
-
Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., & Tsuda, K. (2017). ChemTS: an efficient python library for de novo molecular generation. Science and Technology of Advanced Materials, 18(1), 972–976. https://doi.org/10.1080/14686996.2017.1401424 ↩
-
Yang, X., Aasawat, T., & Yoshizoe, K. (2021). Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design. In International Conference on Learning Representations. https://openreview.net/forum?id=6k7VdojAIK ↩