Home
ChemTSv21 is a refined and extended version of ChemTS2 and MPChemTS3. The original implementations are available at tsudalab/ChemTS and yoshizoe/mp-chemts, respectively.
ChemTSv2 provides:
- easy-to-run interface by using only a configuration file
- easy-to-define framework for users' any reward function, molecular filter, and tree policy
- various usage examples in the GitHub repository
Installation
Info
- Please set up a
Python 3.11
environment to use ChemTSv2. OpenMPI
orMPICH
must be installed on your server to use ChemTSv2 with massive parallel mode.
Single process mode
pip install chemtsv2
Massive parallel mode
pip install chemtsv2[mp]
How to run ChemTSv2
Example
Clone this repository and move into it.
git clone git@github.com:molecule-generator-collection/ChemTSv2.git
cd ChemTSv2
chemtsv2 -c config/setting.yaml
mpiexec -n 4 chemtsv2-mp --config config/setting_mp.yaml
How to cite
@article{Ishida2023,
doi = {10.1002/wcms.1680},
url = {https://doi.org/10.1002/wcms.1680},
year = {2023},
month = jul,
publisher = {Wiley},
author = {Shoichi Ishida and Tanuj Aasawat and Masato Sumita and Michio Katouda and Tatsuya Yoshizawa and Kazuki Yoshizoe and Koji Tsuda and Kei Terayama},
title = {ChemTSv2: Functional molecular design using de novo molecule generator},
journal = {{WIREs} Computational Molecular Science}
}
-
Ishida, S. and Aasawat, T. and Sumita, M. and Katouda, M. and Yoshizawa, T. and Yoshizoe, K. and Tsuda, K. and Terayama, K. (2023). ChemTSv2: Functional molecular design using de novo molecule generator. WIREs Computational Molecular Science https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1680 ↩
-
Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., & Tsuda, K. (2017). ChemTS: an efficient python library for de novo molecular generation. Science and Technology of Advanced Materials, 18(1), 972–976. https://doi.org/10.1080/14686996.2017.1401424 ↩
-
Yang, X., Aasawat, T., & Yoshizoe, K. (2021). Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design. In International Conference on Learning Representations. https://openreview.net/forum?id=6k7VdojAIK ↩