Skip to content

Usage Examples

Target Reward Config Additional requirement Ref.
LogP logP_reward.py setting.yaml - -
Jscore Jscore_reward.py setting_jscore.yaml - 1
Absorption wavelength chro_reward.py setting_chro.yaml Gaussian 162
via QCforever9
3
Absorption wavelength chro_gamess_reward.py setting_chro_gamess.yaml GAMESS 2022.211 via QCforever9
Upper-absorption & fluorescence
wavelength
fluor_reward.py setting_fluor.yaml Gaussian 162
via QCforever9
4
Kinase inhibitory activities dscore_reward.py setting_dscore.yaml LightGBM5 6
Docking score Vina_binary_reward.py setting_vina_binary.yaml AutoDock Vina7 8
Pharmacophore pharmacophore_reward.py setting_pharmacophore.yaml - 10
gnina docking gnina_singularity_reward.py setting_gnina_singularity.yaml - -
Linker generation Linker_logP_reward.py setting_linker.yaml - -

  1. Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., & Tsuda, K. (2017). ChemTS: an efficient python library for de novo molecular generation. Science and Technology of Advanced Materials, 18(1), 972–976. https://doi.org/10.1080/14686996.2017.1401424 

  2. Frisch, M. J. et al. Gaussian 16 Revision C.01. 2016; Gaussian Inc. Wallingford CT. 

  3. Sumita, M., Yang, X., Ishihara, S., Tamura, R., & Tsuda, K. (2018). Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies. ACS Central Science, 4(9), 1126–1133. https://doi.org/10.1021/acscentsci.8b00213 

  4. Sumita, M., Terayama, K., Suzuki, N., Ishihara, S., Tamura, R., Chahal, M. K., Payne, D. T., Yoshizoe, K., & Tsuda, K. (2022). De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning. Science Advances, 8(10). https://doi.org/10.1126/sciadv.abj3906 

  5. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146–3154. 

  6. Yoshizawa, T., Ishida, S., Sato, T., Ohta, M., Honma, T., & Terayama, K. (2022). Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search. Journal of Chemical Information and Modeling, 62(22), 5351–5360. https://doi.org/10.1021/acs.jcim.2c00787 

  7. Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203 

  8. Ma, B., Terayama, K., Matsumoto, S., Isaka, Y., Sasakura, Y., Iwata, H., Araki, M., & Okuno, Y. (2021). Structure-Based de Novo Molecular Generator Combined with Artificial Intelligence and Docking Simulations. Journal of Chemical Information and Modeling, 61(7), 3304–3313. https://doi.org/10.1021/acs.jcim.1c00679 

  9. Sumita, M., Terayama, K., Tamura, R., & Tsuda, K. (2022). QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization. Journal of Chemical Information and Modeling, 62(18), 4427–4434. https://doi.org/10.1021/acs.jcim.2c00812 

  10. 石田祥一, 吉澤竜哉, 寺山慧 (2023). 深層学習と木探索に基づくde novo分子設計, SAR News, 44. 

  11. Barca, Giuseppe M. J. et al. (2020). Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics, 152(15), 154102. https://doi.org/10.1063/5.0005188