Usage Examples
Target | Reward | Config | Additional requirement | Ref. |
---|---|---|---|---|
LogP | logP_reward.py | setting.yaml | - | - |
Jscore | Jscore_reward.py | setting_jscore.yaml | - | 1 |
Absorption wavelength | chro_reward.py | setting_chro.yaml | Gaussian 162 via QCforever9 |
3 |
Absorption wavelength | chro_gamess_reward.py | setting_chro_gamess.yaml | GAMESS 2022.211 via QCforever9 | |
Upper-absorption & fluorescence wavelength |
fluor_reward.py | setting_fluor.yaml | Gaussian 162 via QCforever9 |
4 |
Kinase inhibitory activities | dscore_reward.py | setting_dscore.yaml | LightGBM5 | 6 |
Docking score | Vina_binary_reward.py | setting_vina_binary.yaml | AutoDock Vina7 | 8 |
Pharmacophore | pharmacophore_reward.py | setting_pharmacophore.yaml | - | 10 |
gnina docking | gnina_singularity_reward.py | setting_gnina_singularity.yaml | - | - |
Linker generation | Linker_logP_reward.py | setting_linker.yaml | - | - |
-
Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., & Tsuda, K. (2017). ChemTS: an efficient python library for de novo molecular generation. Science and Technology of Advanced Materials, 18(1), 972–976. https://doi.org/10.1080/14686996.2017.1401424 ↩
-
Frisch, M. J. et al. Gaussian 16 Revision C.01. 2016; Gaussian Inc. Wallingford CT. ↩↩
-
Sumita, M., Yang, X., Ishihara, S., Tamura, R., & Tsuda, K. (2018). Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies. ACS Central Science, 4(9), 1126–1133. https://doi.org/10.1021/acscentsci.8b00213 ↩
-
Sumita, M., Terayama, K., Suzuki, N., Ishihara, S., Tamura, R., Chahal, M. K., Payne, D. T., Yoshizoe, K., & Tsuda, K. (2022). De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning. Science Advances, 8(10). https://doi.org/10.1126/sciadv.abj3906 ↩
-
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146–3154. ↩
-
Yoshizawa, T., Ishida, S., Sato, T., Ohta, M., Honma, T., & Terayama, K. (2022). Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search. Journal of Chemical Information and Modeling, 62(22), 5351–5360. https://doi.org/10.1021/acs.jcim.2c00787 ↩
-
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203 ↩
-
Ma, B., Terayama, K., Matsumoto, S., Isaka, Y., Sasakura, Y., Iwata, H., Araki, M., & Okuno, Y. (2021). Structure-Based de Novo Molecular Generator Combined with Artificial Intelligence and Docking Simulations. Journal of Chemical Information and Modeling, 61(7), 3304–3313. https://doi.org/10.1021/acs.jcim.1c00679 ↩
-
Sumita, M., Terayama, K., Tamura, R., & Tsuda, K. (2022). QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization. Journal of Chemical Information and Modeling, 62(18), 4427–4434. https://doi.org/10.1021/acs.jcim.2c00812 ↩↩↩
-
石田祥一, 吉澤竜哉, 寺山慧 (2023). 深層学習と木探索に基づくde novo分子設計, SAR News, 44. ↩
-
Barca, Giuseppe M. J. et al. (2020). Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics, 152(15), 154102. https://doi.org/10.1063/5.0005188 ↩